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The results are presented of an investigation to identify and quantify the relative influence
of their geometrical features with that of other relevant physical and operational factors
on the acoustic behaviour of cross-flow silencers. This was accomplished by comparing the
measured with the predicted attenuation performance of a sequence of generic examples
of cross-flow and flow-reversing silencing elements. Such silencers are all assembled around
a common geometric central feature, consisting of an expansion chamber spanned by the
perforated inlet and outlet pipes. The predictive modelling included the simplifying
assumption that the wave motion throughout the central element is essentially
one-dimensional and directed along the pipe and chamber axes, with radial propagation
existing only through walls. The existence of any axial mean velocity gradients was also
neglected, so that the mean flow velocity and all the other relevant physical properties of
the acoustic medium were represented by their locally space averaged values. Comparisons
between measured and predicted performance of some thirty representative models are
summarized and discussed in terms of the relative significance of their relevant physical and
operational features on their attenuation performance. The subsequent validation of the
acoustic modelling included the identification of those features that required further
investigation. Nevertheless, the results demonstrate that the predictive modelling provides
adequately realistic predictions of silencer acoustic performance for practical application
to exhaust system design.
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1. INTRODUCTION

Cross-flow and flow-reversing silencers form component elements of contemporary
automotive exhaust systems, where relatively high acoustic performance is required from
restricted spaces. A sequence of common generic types is illustrated schematically in
Figure 1. In the figure they have been assembled in two groups, in accordance with the
path taken through them by the exhaust flow and acoustic energy flux. However, it is clear
from the figure that all the examples have a basic central geometrical arrangement in
common, which consists of two perforated tubes spanning an expansion chamber. In the
first group of three, the layout of plug and cross-flow silencers is described in Figures 1(a)
and 1(b), respectively, while that of the cross-flow reversing one is described in Figure
1(bR). In this group, the exhaust flow is forced through the perforate as it travels from
the inlet to the outlet pipe, while the acoustic energy travels along the same path.

With the second pair in Figures 1(c) and 1(d), one can see that the bulk of the exhaust
gas normally flows along each pipe and is transferred from the inlet to the outlet pipe via
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Figure 1. Silencer types. (a) Plug; (b) cross-flow; (bR) cross-flow reversing; (c) cross-flow reversing with
parallel paths; (d) triflow with Helmholtz resonator.

a flow reversing expansion chamber. This structural arrangement now provides two
parallel paths for the flow of gas and the transmission of acoustic energy. The triflow type
in Figure 1(d) is particularly popular, since the gas enters and leaves the silencer in the
same direction along the exhaust system. The example in Figure 1(c) normally constitutes
a component of the triflow, and in consequence is seldom identified as a separate item.
For convenience, it is identified here as a cross-flow with parallel paths. A Helmholtz
resonator is sometimes added to the flow reversing chamber, to enhance the attenuation
over specific narrow bands, so an example has been included in the triflow silencer in
Figure 1(d).
Despite the wide adoption for practical application of the whole range of silencers

illustrated in Figure 1, predictive models of their acoustic characteristics appear to have
been confined to the first group of three in the figure. Furthermore, experimentally
validated models are apparently available [1] only for the type defined in Figure 1(a).
Clearly, when silencers of this group are incorporated in an exhaust system, a relatively
strong mean velocity gradient must exist along the perforated pipes. This was
accounted for in the predictive model described in reference [1] by adopting an axially
distributed segmentation approach for the modelling. Later predictive models (see, for
example, reference [2]), adopted a distributed parameter approach to develop the
defining equations, but although they were included in the original formulation, the
velocity gradient terms were omitted during the calculations, raising some doubts
concerning the realism of the resulting predictions. A new solution [3] that retains the
velocity gradients has now resolved this uncertainty, since it showed that their influence
on the predicted transmission loss remains sufficiently small to be neglected for
practical purposes.

This result justifies adoption of the simplifying assumption that the existence of any
mean axial velocity gradients in the perforated pipes may be neglected in the development
of predictive models of the silencers illustrated in Figure 1 for practical applications. With
the exception of the plug muffler for which validated predictive models already exist [1],
predictions of the acoustic performance of the remainder are compared with the results
of measurements in what follows here. Although they were essentially similar to the
predictive models adopted in references [1–3], there are differences in detail, mainly to
ensure that practical realism in the predictive modelling [4] was maintained as far as
possible. For example, provision for the presence of temperature and density gradients was
included in modelling. In place of transmission loss, they now provide predictions of the
relative changes in amplitude of the positively and negatively travelling component waves,
represented respectively as p+ and p−, in pipes attached to the silencer’s inlet and outlet
ports, to facilitate comparisons with the measured behaviour.
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Measurements of the corresponding component wave spectra were made in these two
pipes, while the system was being excited by white noise for comparison with predictions
by the new models. A dedicated four-channel digital data acquisition system was employed
to acquire store and process signal records of appropriate length. This technique has been
employed at Southampton as a well established experimental procedure [5] since the
mid-1970s, and is described further in Appendix A. Performed initially with zero flow, the
measurements were repeated with Mach numbers 0·05 and 0·1 in the silencer inlet pipe.
Measurements at higher Mach numbers were found to be too strongly contaminated by
flow generated noise, to provide realistic validations of the predicted acoustic behaviour,
which currently does not include the generation of flow noise within the silencer elements.

2. THE PREDICTIVE MODELS

The models here predict the acoustic transfer across the silencers, illustrated
schematically in Figures 1(b)–1(d). The model is derived by separating the overall transfer
into a number of separate steps, beginning with transfers over the central section that
extends only along the perforated lengths of the pipes and has already been identified as
being common to all. Here there exists transfer from the inlet pipe to the chamber and
from the central chamber to the outlet pipe as illustrated in Figure 2. It is convenient to
divide this central section further into three corresponding regions which are coupled
through the perforated walls. Acoustic propagation along each pipe and along the central
chamber is assumed to be essentially one-dimensional, with radial propagation and gas
flow between the regions existing only at the perforated walls.

2.1.       

The appropriate equations expressing conservation of mass and momentum [4, 5] were
combined to derive the three coupled wave equations describing the associated axial
acoustic pressure distribution in each region. The existence of any angular variation of
pressure around the circumferences of the pipes was neglected, although some observations
[6] indicate that this might have limited validity in some instances. The two-dimensional
expression describing the fluctuating acoustic pressure distribution in each region j is
expressed by [5]
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where the right side describing the radial motion at the perforated walls can be interpreted
as a forcing term, while D/Dt corresponds to 1/1t+Mjcj 1/1x. Also, cj , rj and Mj are,
respectively, the appropriate values of the local space averaged sound speed, mean density
in the holes and Mach number of the mean axial flow, with vj the similarly averaged radial

Figure 2. A central element with two perforated pipes.
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particle velocity through the perforated wall. (See also the discussion of reference [3] in
the Journal of Sound and Vibration 191, 606–611.)

The corresponding one-dimensional expressions describing the acoustic pressure
distribution in each region are derived by integrating equations (1) over the cross-section
area Sj of the respective regions. This then yields
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where Lj is the appropriate local value of the perforated wall perimeter. Within the pipes
this is the corresponding inner perimeter, while in the expansion chamber this is the sum
of their outer perimeters. One is reminded that, in equations (2a), (2b) and (2c) radial
motion is restricted to the perforated walls, and also that in the expansion chamber
external to the pipes Mj =M2 =0.

The particle velocities in equations (2) are eliminated by applying the mass continuity
equation to the flow through the perforate. With fluid at rest on both sides, there will be
continuity of particle velocity and vj is simply equal to the ratio of the fluctuating pressure
difference across the wall Dpw to the perforated wall impedance Zw . Empirically
conditioned analytic expressions for Zw were adopted from reference [5] and are
summarized in Appendix B. With flow on one side of the wall, as is the case here, it has
been argued that continuity of particle displacement would be more appropriate. But after
a thorough investigation of both alternatives [5] it was found continuity of velocity yielded
a predicted behaviour that remained in better agreement with observations. Subsequent
to the appropriate substitutions for vj in terms of pj and Zw , as with equations (2), the result
will be linear in pj(x, t) with coefficients that are independent of x. For each of the three
regions its Fourier transform giving the corresponding spectral density pj(x, v), with
kj =v/cj becomes, respectively,

[(1−M2
1) 12/1x2 −M1(2ik1 + s1) 1/1x+(k2

1 − ik1s1)]p1 =−[M1s1 1/1x+ik1s1]p2, (3a)

[12/1x2 + k2
2 − ik(s12 + s23)]p2 =−ik2(s12p1 + s23p2), (3b)

[(1−M2
3) 12/1x2 −M3(2ik3 + s3) 1/1x+(k2

3 − ik3s3)]p3 =−[M3s3 1/1x+ik1s1]p2, (3c)

where p1, p2 and p3 are, respectively, the spectral component acoustic pressures in the inlet
pipe, or region 1, the expansion chamber, or region 2, and the outlet pipe, or region 3.
Also
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where a1, t1, Z12 and a3, t3, Z23 are respectively, the inside radius, wall thickness and
impedance of the inlet and outlet pipes, while S2 is the net cross-section area of the
expansion chamber, after subtracting the areas occupied by the pipes.

As should be expected, equations (3) are essentially the same as those found elsewhere,
for example, in references [1] and [2], but the gas and flow conditions are now represented
by their space averaged values over each region of the central section of the silencer, as
illustrated in Figure 2. Where relevant, due account must be included for any temperature
and static pressure gradients present. As such, they do not yet provide a complete
predictive model of the silencers illustrated in Figures 1(a)–1(d), but only of the coupled
wave motion in the central section.

Equations (3) can be reduced to a sixth order equation, for example describing the
distribution of fluctuating pressure p2 in the expansion chamber, which can then be solved



   199

to evaluate the corresponding six roots, or eigenvalues, ln . In some instances after the
reduction, the values of the resulting complex coefficients may differ by two or three orders
of magnitude. Even so, in contrast to some reports in the literature, for example reference
[2], no difficulty was found in finding stable solutions for ln provided that sufficient
numerical precision was available to minimize uncertainties arising from rounding errors
in the calculations with the algorithm adopted for this purpose. Alternatively, a numerical
decoupling of equations (3) [2], or a matrizant solution [3] of the corresponding six first
order equations in p, rcu and M, may be adopted instead. An investigation of the first
two alternatives [6] showed that solutions of either the sixth order equation, or its
numerically decoupled alternative, yielded closely similar values for ln .

These values can be substituted back into equations (3a), (3b) and (3c) to yield the
following three expressions describing the pressure distributions pj(x, v) in the three
regions in Figure 2: namely,

pj(x, v)= s
6

n=1

Bjn exp(lnx), j=1, 2, 3. (5a)

Substitution for p1 and p2 from equations (5a) into equation (3a) shows that the pressure
amplitudes B1n and B2n are related by

B1n =f1nB2n , (5b)

where

f1n =−s1(M1ln +ik1)/[(1−M2)l2
n −M1(s1 +2ik1)ln +(k2

1 − ik1s1)]. (5c)

Also substituting for p2 and p3 in equation (3c) shows that B3n and B2n are related by

B3n =f3nB2n , (5d)

where f3n is the result of substituting the subscript 3 for the subscript 1 in equation (5c).
These expressions demonstrate that the pressure distributions differ distinctly in the three
regions, but equations (5b) and (5d) represent the relations between them.

The values of the corresponding six B2n pressure amplitudes are determined first by
establishing the six boundary conditions evaluated over plane 1 and plane 2 at the positions
that are labelled 4–9 in Figure 2. Clearly, across each transfer plane, there must be
continuity of acoustic pressure and of particle velocity, together with conservation of
momentum. One should note that in the special case of zero flow in the absence of
temperature gradients and with two perforated tubes of identical geometry, equations (5)
become degenerate and there are then only four distinct roots, with corresponding changes
to the necessary boundary conditions.

2.1.1. Conservation of momentum
Following established practice [4], acoustic conditions in the silencer input and output

pipes are normally expressed in terms of the local amplitudes p+ and p−, respectively, of
the positively and negatively travelling component waves. With plane wave motion the
corresponding acoustic pressure p and particle velocity u, are expressed in terms of the
component wave amplitudes by

p= p+ + p− and rcu= p+ − p−, (6a,b)

which provide useful alternatives for describing acoustic pressure and velocity. The ratio
p/rcu, or ( p+ + p−)/( p+ − p−) defines the dimensionless impedance z.
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With one-dimensional flow, conservation of momentum is expressed by

(1/1t+Mc 1/1x)u+(1/r) 1p/1x=0, (7a)

which, with the substitution of Bn exp(lnx) exp(ivt) for p, and p/z for rcu, becomes

[ln(z+M)+ ik]Bn exp (lnx)=0, (7b)

where the unknown values include the value of dimensionless impedance z as well as those
of Bn .

Alternatively, with u=(p+ − p−)/rc for the second substitution, equation (7a) becomes.

Bnln exp(lnx)/(Mln +ik)+ ( p+ − p−)=0. (7c)

Specifically, across the inlet plane at position 4 in Figure 2, conservation of momentum
between inlet pipe and region 1 is expressed by

B1nc1n =( p+
4 − p−

4 )/r4c4, (7d)

where

c1n =−ln exp (lnx)/(M1l1 + ik)r1c1. (7e)

Similarly, across the outlet plane at position 9, it is expressed by

B3nc3n =( p+
9 − p−

9 )/r9c9, (7f)

where c3n is defined by equation (7e) with the subscript 1 replaced by 3.

2.2.       

To establish the values of the six fluctuating pressure amplitudes B2n in equation (5a),
one needs six boundary conditions. These, in general must satisfy continuity of pressure
and velocity, or conservation of momentum at the designated transfer planes. Combining
Figure 2 with Figure 1 produces the result in Figure 3, which presents all the information
necessary to identify and evaluate the required conditions. Following established practice
[4], the acoustic transfer along the tailpipe is calculated first, starting at its termination.
This provides the component wave amplitudes p+

in and p−
in at the inlet plane of the tailpipe.

This is the plane between region 3 and position 9 in Figure 3(a) or, alternatively, between

Figure 3. Silencer geometries. (a) Cross-flow silencer; (b) cross-flow reversing; (c) flow-reversing chamber.
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region 3 and position 6 in Figures 3(b) and 3(c). Since the pressure must be continuous
across the transfer plane one of either p+

9 + p−
9 or p+

6 + p−
6 is equal to p+

in + p−
in , which gives

one boundary condition. Equation (7f) provides a second.
Referring to Figure 3, one sees that the remaining four boundary conditions that are

still required can be specified by satisfying conservation of momentum expressed by
equation (7b) at the relevant interfaces. These are between region 1 and position 7, between
region 2 and positions 5 and 8, and between region 3 and one of either positions 6 or 9.
However, one must first establish the values of the corresponding dimensionless
impedances zj , j=5, . . . , 9, so these can then be substituted in equation (7b).

2.2.1. The reflection coefficients and impedances
The dimensionless impedance z=( p+ + p−)/( p+−p−) is readily evaluated in terms of

the pressure reflection coefficient r, defined as the ratio of negative to positive component
wave amplitudes, p−/p+, and z is then equal to (1+ r)/(1− r). In Figure 3(a), r7 and r8

on the right side are both equal to rw exp(−2ikl2) as demonstrated in reference [4], where
rw is the reflection coefficient at the wall on the right side. However, on the left side of
the central element, r5 and r6 are both equal to exp(2ikl1)/rw), since rw is normally still
expressed as the ratio of reflected to incident wave amplitude at the wall. The same
expressions apply to r7, r8 and r9 on the right side and to r5 on the left in Figure 3(b).
Similarly, they apply respectively to r8 and to r5 in Figure 3(c).

In Figure 3(c) the reflection coefficients r7 and r9, however, must be calculated with due
account taken of the reactive behaviour of the attached flow-reversing chamber. This has
a chamber length l4 with the two pipes with centres a distance l5 apart, protruding a distance
l3 into it. Experimental evidence indicates that a one-dimensional predictive model yielding
a first approximation to the acoustic behaviour is obtained by subtracting the mean
diameter of the two pipes from l5 and adding the result to the sum of l2 + l3 to give the
effective length of the inlet pipe. That for the outlet pipe is simply l2 + l3. Presumably, this
addition to the inlet pipe makes some appropriate adjustment or end correction for the
time taken for waves to travel between the inlet and outlet pipes across the expansion.
Appropriate procedures for the calculation of r7 and r9 in Figure 3(c) are described in
reference [4]. They include the influence on wave propagation of mean flow and that
of the evanescent waves generated at the expansion into the chamber and contraction
out of it.

Clearly, in the approach just described one assumes that each tube is coupled
independently to the expansion chamber, while in fact they are both coupled
simultaneously. One also assumes that the acoustic motion remains one-dimensional and
axial and, clearly, this lacks realism in many practical cases. Thus this approach is limited
in application to those geometries where the experimental evidence demonstrates that the
resulting model provides a sufficiently realistic first approximation. As noted later in
section 4.2.1, consistently realistic models of the acoustic behaviour of flow-reversing
chambers requires further extensive study and development.

2.3.        

The solutions of equation (5a), describing the acoustic pressure distribution in the
central section of the silencers in Figure 3, follows a common procedure, but there are
changes in some of the details that reflect their individual geometry. After having evaluated
a set of six boundary conditions at points 5–9 in Figure 3, they are substituted back into
equations (5) to establish a set of six simultaneous equations which can be solved for the
six pressure amplitudes B2n .
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2.3.1. The cross-flow chamber
With reference to Figure 3(a), one notes that the origin for x is at the outlet position

9, so x=0 at positions 7, 8, and 9, interfacing with regions 1, 2 and 3 respectively. Also
x=−l at positions 5 and 6, interfacing with regions 2 and 3. The Mach number is equal
to M1 at position 4, and M3 at 9, but zero at 5–8. The amplitudes of the component
pressures p+

9 and p−
9 are known at position 9 but not elsewhere. Across the outlet plane

at 9 continuity of pressure and conservation of momentum, from equation (7f), are
expressed respectively as

s
6

n=1

B2nf3n = p+
9 + p−

9 , s
6

n=1

B2nf3nc3n =(p+
9 − p−

9 )/r9c9, (8a,b)

and at positions 5–8, conservation of momentum from equation (7b) is expressed by

s
6

n=1

B2n(lnz5 + ik) exp(−lnl)=0, s
6

n=1

B2nf3n(lnz6 + ik) exp(−lnl)=0, (8c,d)

s
6

n=1

B2nf1n(lnz7 + ik)=0, s
6

n=1

B2n(lnz8 + ik)=0. (8e,f)

The six simultaneous linear equations (8a)–(8f) are then solved for B2n , n=1, . . . , 6. The
relevant vectors Bjn are then evaluated for regions 1 and 3 and inserted into equations (5),
thus establishing the acoustic pressure distribution throughout the central element of the
cross-flow chamber.

2.3.2. The cross-flow reversing chamber
With reference to Figure 3(b), at positions 5 and 6, x=0, while at positions 7, 8 and

9, x= l. Also again the Mach number equals M1 at position 4, but it is now M3 at position
6, while the direction of flow has been reversed. At the remaining positions it is again zero.
Continuity of pressure and conservation of momentum at position 6 are expressed,
respectively, by

s
6

n=1

B2nf3n = p+
6 + p−

6 , s
6

n=1

B2nf3nc3n =(p+
6 − p−

6 )/r6c6. (9a,b)

At the two ends of the central region 2 of the expansion chamber, at x=0 and now
at x= l, after applying equation (7b), conservation of momentum is expressed,
respectively, by

s
6

n=1

B2n(lnz5 + ik)=0, s
6

n=1

B2n(lnz8 + ik) exp ll=0, (9c,d)

and similarly at the right-hand ends of the inlet and outlet pipes, respectively, when
x= l by

s
6

n=1

B2nf1n(lnz7 + ik) exp ll=0, s
6

n=1

B2nf3n(lnz9 + ik) exp ll=0. (9e,f)
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Equations (9a)–(9f) are solved for B2n by the same procedure. Following this, the
appropriate values of Bjn are substituted in equations (5), to establish the pressure
distribution in the central element of the cross-flow reversing silencer.

2.3.3. The cross-flow silencer with parallel paths
With reference to Figure 3(c), the geometrical arrangement of the central element is

similar to that in Figure 3(b), but the Mach number is no longer zero but is now equal
to M1 at position 7 and M3 at position 9. For this case, equations (9e) and (9f), after making
use of equation (7b), are replaced by

s
6

n=1

B2nf1n(ln(z7 +M1)+ ik) exp ll=0,

s
6

n=1

B2nf3n(ln(z9 +M3)+ ik) exp ll=0, (10e,f)

while the remaining four equations (10a)–(10d) describing continuity of pressure or
conservation of momentum for this geometry are the same as the corresponding
equations (9). After having solved equations (10) for B2n , the appropriate values of Bjn are
substituted in equations (5) to describe the acoustic pressure distribution in central
perforated element of the cross-flow reversing chamber with parallel flow paths.

2.3.4. The triflow silencer
With reference to Figure 1(d), it is clear that equations (10) describing continuity of

pressure at position 6 and conservation of momentum at this and the other four positions
also apply to the central element of the triflow. One notes that proper account of the
presence or otherwise of a Helmholtz resonator attached to the flow resonator should be
included in the evaluation of the two relevant reflection coefficients r7 and r9. The remaining
component of the triflow geometry, namely the flow-reversing chamber leading to the
tailpipe, will have been taken into account when evaluating the two component pressures
p+

6 and p−
6 at the outlet of the central perforated element.

2.4.       

To complete the set of acoustic models of the silencers illustrated in Figure 1, one
must first establish the distribution of fluctuating acoustic velocity throughout the
central perforated section. To do so, one can combine the relevant form of equation (7c),
describing conservation of momentum, with equations (5), leading to

( p+
j − p−

j )= s
6

n=1

−Bjnln exp(lnx)/(Mjln +ikj), j=1, 2, 3, (11)

in the relevant region j at the axial co-ordinate positon x. Normally, to describe the overall
acoustic performance of the central acoustic element, one needs only to calculate the
velocity and pressure at the inlet plane, position 4. From equation (5a), for example, the
pressure is given by

p4 = p+
4 + p−

4 = s
6

n=1

f1nB2n exp(lnx4), (12a,b)
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while the velocity, after making use of equation (7e), is given by

u4 = ( p+
4 − p−

4 )/r4c4 = s
6

n=1

f1nB2nc1n . (12c,d)

Equations (12a) and (12c) can be solved for p+
4 and p−

4 , leading to

2p+
4 = p4 + r4c4u4, 2p−

4 = p4 − r4c4u4. (13a,b)

The acoustic velocity and pressure at any other point in the three regions of the central
element of the silencers in Figures 1 and 3 can be calculated by appropriate substitutions
in equations (5) and (7e). After having done this, the corresponding component wave
amplitudes p+ and p− can be calculated for that point with equations (13a,b).

2.5.        

To complete the predictive models for the silencers in Figure 1, one needs to include
the transfers from the silencer output plane to the output plane of the central section and
similarly from its input plane to the silencer input plane. Since the necessary information
is available in terms of the complex amplitudes of the positively travelling p+ and
negatively travelling p− component waves at the relevant positons, this is a straightforward
procedure for the four examples in Figures 1(a)–1(c), where the corresponding transfers
are along known lengths of uniform pipe. With the triflow example illustrated in
Figure 1(d), one needs to calculate the transfers along the appropriate length of the
uniform tailpipe and then via the flow-reversing expansion to the outlet plane at position
6 in Figure 3(b). Methods for calculating such transfers in expansion chambers can be
found in reference [4].

2.5.1. Silencer acoustic performance
It is often convenient to summarize the acoustic performance of silencers by spectral

descriptions of their acoustic transfer characteristics. If the predicted wave component
amplitudes at the inlet plane are p+

I and p−
I respectively, while those at the outlet plane

are p+
0 and p−

0 , then a simple performance index [4] is the attenuation index AL,
defined by

AL=20 log10=p+
I =/=p+

0 =. (14)

Another is the acoustic power loss index WL, expressed for plane waves by

WL=10 log10(WI/W0), (15a)

where

WI =(SI/rIcI)[(1+MI)2=p+
I =2−(1−MI)2=p−

I =2], (15b)

and SI is the cross-section area, while W0 is evaluated by the corresponding expression to
equation (15b).

Acoustic performance is commonly described by the transmission loss index TL, which
for an acoustic element is formally defined as the difference in sound power in free space
between that incident on and that transmitted across it, and is then an invariant property
of the element. When applying this definition to the flow duct situation, and taking
account of the presence of both incident and reflected waves, then TL is similar to WL.
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However, in many cases it is assumed that the termination at the silencer outlet is anechoic,
so that

TL=10 log10(WI/W'0), (16a)

where

W'0 =S0/r0c0[(1+M)2=p+
0 =2], (16b)

since p−
0 is then zero. This clearly does not correspond to the normal installed performance

of any silencer in a practical situation. Furthermore, since the acoustic pressure
p= p+ + p− varies cyclically with axial position along a uniform pipe, while the individual
wave component magnitudes of the =p+= and =p−= remain effectively independent of position,
equations (14), (15) or (16) seem likely to provide a more consistent comparison of
predicted with measured performance, than measurements of the fluctuating pressure on
either side of the element, unless appropriate precautions are taken while performing the
measurements or the calculations.

Another alternative is to model the acoustic behaviour [7] by an appropriate transfer
matrix T. A scattering matrix, for example, is a square 2×2 matrix with the four elements
T11, T12, T21 and T22 and then

p+
1 =T11p+

2 +T12p−
2 , p−

1 =T21p+
2 +T22p−

2 . (17a,b)

Measurements or calculations with an anechoic termination, so that p−
2 =0, suffice to

establish the values of T11 and T22, but a second measurement or calculation is then
required to find the values of T21 and T12. A popular alternative is to adopt the equivalent
so-called impedance matrix, relating the transfer of acoustic pressure p1 and velocity u1 at
inlet to the corresponding values p2 and u2 at outlet. The same requirements obviously
apply to the evaluation of four elements of this matrix.

2.6. 

The realism of the predicted results will depend on a number of factors. Some of these,
such as the relative precision with which the geometric detail and flow and gas properties
are specified, are obvious. Others, such as the influence of viscothermal losses to the pipe
walls, and the influence of entropy changes at area discontinuities [4] have been described
elsewhere. Other factors, including the specification of perforated wall impedance that is
described in Appendix B, with the acoustic transfers at flow-reversing chambers briefly
discussed later, also have a significant influence on the realism of the predictions.

Experience has shown that rounding errors, or the occurrence of numerical overflow,
or of underflow, during the numerical calculations, can also present problems. The
precautions required for the successful extraction of the roots ln describing the
wavenumbers in the central perforated element have already been described. It was found
that these roots can have positive and negative parts which can be sufficiently large to cause
overflow or underflow when computing the values of the factor exp(lnx) that was present
in many of the equations involving Bjn . Thus, as with those concerned with the extraction
of the roots, all these calculations should be performed with adequate precision to avoid
such numerical problems. Practical experience indicates that double precision is normally
adequate with the 32-bit processors installed in contemporary desktop computers.

Although the measurements described here were performed at ambient conditions, the
predictive code written in Fortran and implemented in the computer [8] included
appropriate provision for the existence of flow temperature and static pressure gradients
normally present in any practical application. Similarly, the code included appropriate
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modelling of the Helmholtz resonators shown in Figure 1(d), while the corresponding
experimental validation appears in references [8, 9].

3. SILENCER ATTENUATION PERFORMANCE

The attenuation performance defined in equation (14) was both measured and calculated
for a systematic sequence of silencers representing the range of silencer types illustrated
in Figures 1(b)–1(d). Attenuation performance [8] was adopted to describe acoustic
behaviour for reasons set out in section 2.5.1. For each type, certain geometric features
are known to modify their acoustic behaviour significantly, so the relative influence of
several of these factors was included in the investigation. For example, the tailpipe length
is well known to modify the spectral distribution of attenuation peaks and troughs; also
the ratio of chamber to pipe cross-section areas, or the expansion ratio, is a factor that
often controls the general levels of the spectral peaks, while the porosity of the perforated
pipes is one of the factors directing the paths followed by the gas flow and the propagation
of acoustic energy, and thereby has a direct influence on acoustic behaviour. Finally, to
establish the influence of mean flow on acoustic performance, measurements were made
at flow Mach numbers ranging from M=0 to M=0·1. The relevant geometric features
of all the model silencers are set out in Appendix C.

Sets of measurements of silencer attenuation performance were completed on a sequence
of some 20 model silencers. The results presented here were chosen from among these to
illustrate the relative influence on silencer performance of the various factors already listed
and to include others that are also often significant. The aim was to provide appropriate
physical insight either to verify or improve the modelling and thereby the realism of the
resulting predictions, or to guide design choice and detail when developing and refining
an optimum exhaust system design relevant for each practical application. Thus one
primary aim of the measurements was to establish a database identifying the relationships
between observed acoustic behaviour and the layout, with the detailed arrangements of
the silencer element’s geometry. Another was to use the observations to validate the
predictive models described in section 2, and assess their realism for application to practical
design development and assessment.

3.1. -  

Two silencers of the type shown in Figure 1(b) were selected, with both the expansion
ratio and the porosity of the first double that of the second. Comparisons of their measured
and predicted performance then gave some information on the relative influence of these
two factors on silencer acoustic performance. The attenuation performance of the first
labelled silencer, no. 1, is presented in Figure 4 and of the second labelled silencer, no.
2, in Figure 5.

Comparisons between measurements and predictions for cross-flow silencer no. 1 with
zero flow are represented in Figure 4(a). The data was recorded with the shorter data
lengths and at the lower sampling rate of the two sets defined in Appendix A. The hairy
appearance of the results at the higher attenuation peaks is probably an artefact of the
resulting limit in the number of spectral averages that was possible with this length of data
record, so the higher sampling rate with the longer data record was used for the remainder
of the measurements. This appearance was also traced to the limited dynamic range that
resulted from the relatively low output of the source between 500 and 600 Hz and above
800 Hz. The attenuation minima at 163, 325, 490, 655, 820 and 980 Hz all correspond to
the half-wave resonances of the tailpipe with acoustic length of 1·01 m plus the end
correction [4] to be added at the open termination. This varied between 14 and 12 mm over
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Figure 4. The attenuation of cross-flow silencer no. 1; perforate 15·9% porosity. (a) Zero flow, tailpipe
1·01 m: ———, measured; — — —, predicted; ----, predicted without perforate present. (b) With flow, tailpipe
0·874 m, ———, M=0; — — —, M=0·05; ---, M=0·1.

the frequency range shown giving a total acoustic length of 1·024–1·022 m. (But see also
the discussion in section 4.2.) The area expansion ratio between pipe and chamber was
15·6, while one can see that the peak observed attenuation in Figure 4(a) was close to
20 log 15·6 or 24 dB. This also corresponds to the value one would anticipate [7] with an
open chamber after the perforated pipes had been removed! Predictions both with the
model described in section 2.3.1 and with an open chamber [4], that is, with perforate pipes
omitted, are also both included in Figure 4(a). The close agreement between the two
predictions and also with the measurements suggests that pipes with a wall porosity of 15·9
percent have a sufficiently open surface to be effectively acoustically transparent. Thus all
but one of the other model silencers were constructed with perforated pipes with the
significantly lower porosity of 6·8 percent.

The attenuation performance of the same silencer both with flow and with a shorter
tailpipe is presented in Figure 4(b). The source of white noise excitation was also changed
to a much more powerful driver which, however, now had a limited output below 150 Hz
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Figure 5. The attenuation of cross-flow silencer no. 2; perforate 6·8% porosity. (a) Zero flow, tailpipe
1·017 m: ———, measured; · · · · ·, predicted. (b) Predicted: ———, zero flow; — — —, Mach number=0·1.

and above 950 Hz. The significantly higher levels of excitation that resulted were required
to reduce the relative contamination by flow noise sources. One notes that the shorter
tailpipe raised the frequency of attenuation minima by some 15 percent. The influence of
flow is clearly to reduce the measured overall acoustic performance, by up to 10 dB at
M=0·1. This seems to be in contrast with published predicted transmission loss
performance spectra in the literature, which tend to indicate a significant increase with
flow. Further discussion of this seemingly paradoxial behaviour has been postponed until
sections 3.4 and 4.1.2.

In Figure 5(a) is presented the zero flow attenuation performance of cross-flow silencer
no. 2, where the perforate porosity was reduced from 15·9% of silencer no. 1 to 6·8% and
the area expansion ratio was similarly reduced from 15·6 to 8·55. This provides a lower
predicted open chamber peak attenuation of 18·5 dB. The tailpipe length was 1·017 m,
while the open end corrections were some 2 mm less, so tailpipe resonance frequencies were
slightly reduced in comparison with those in Figure 4(a). However, one can clearly see that
the shape of the attenuation spectrum is now significantly different between 700 and
900 Hz, indicating the strong influence over this frequency band of the perforated walls
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on both the measured and predicted performance. Although the performance was not
measured with flow, the two curves plotted in Figure 5(b) show the predicted change in
attenuation performance produced by a flow at a Mach number of 0·1. Comparison with
Figure 4(b) shows that the reduction in peak attenuation by 10 dB matches the result there,
but at the minima at 170 and 340 Hz the results do not quite correspond. Thus there is
an increase in attenuation of 5 dB for both in Figure 5(b), in contrast to an increase of
10 dB at the corresponding lower frequency minima, but a reduction of 10 dB at the higher
frequency minima in Figure 4(b)!

One should note that the zero flow predictions in Figure 5(a) differ in detail at 800 Hz
from the corresponding ones in Figure 5(b). The relevant calculations were performed
respectively on an IBM type 486 and a Macintosh type SE/30, where the corresponding
processors and thus their associated rounding errors were not the same.

3.2. -  

The measurements with the flow-reversing silencers are presented in two main groups.
With the first group, the dimensions of the central section geometry remained effectively
the same as those for cross-flow silencer no. 2. The first silencer in this group, no. 2(R),
is in fact no. 2 with the tailpipe transferred from the outlet to the inlet end, so it represents
the geometric arrangement in Figure 1(bR). Silencer no. 2(c) has a flow-reversing chamber
added along the lines shown in Figure 1(c), while no. 2(d) has been converted to a triflow
by appropriate additions of a second flow-reversing chamber and longer tailpipe passing
through the expansion. This group of measurements with the associated predictions thus
provides comparative information on the characteristic acoustic behaviour of the three
types of silencer layout.

The measurements and predictions, all for zero flow, are assembled together in Figure 6.
The measured attentuation performance of silencer no. 2(R) with zero flow is presented
in Figure 6(a), with the corresponding prediction for comparison. Since the tailpipe length
is the same as with silencer no. 2, the frequencies of the associated attenuation minima
are the same as those in Figure 5(a). Otherwise, comparison of the two measurements
reveals several differences. There is a general rise averaging at least 5 dB in attenuation
right across the spectrum. Between 200 and 500 Hz which includes the high peak at 365 Hz
it exceeds 10 dB: on the other hand, over a band centred at 800 Hz there is a reduction
in attentuation of about the same magnitude. One is tempted to draw a parallel between
the contrasting acoustic behaviour of these two silencers with the resonant behaviour of
acoustic elements of the same length, that are either open at both ends or have one end
closed.

Comparison of the measurements in Figure 6(b) with those in Figure 6(a) shows that
the addition of the flow-reversing chamber, to convert silencer 2(R) to 2(c), has produced
little further change in acoustic performance. The systematic increase in the frequency of
the minima is most probably due to the reduction of the tailpipe length from 1·0174 m
to 0·973 m. In both of these two examples a fair to good correlation exists between the
predictions and the observations. The differences in level between observation and
prediction at the high attenuation peaks could well be ascribed to small differences between
the actual and assumed wave damping and other losses during the calculations. This is
supported by the good agreement shown at lower levels of attenuation. Alternatively, it
could be due to the relative reduction in the reflection coefficient at the closed end of the
central element in silencer 2(c).

Comparison of Figure 6(c) with Figure 6(b) demonstrates the changes in acoustic
performance that accompany the addition to a further flow-reversal element with almost
half a metre to the length of the tailpipe. These additional components have raised the
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Figure 6. The comparable attenuation of flow-reversing silencers, with ‘‘identical’’ central sections.
(a) Cross-flow reversing 2(R), tailpipe 1·017 m: ———, measured; — — —, predicted, (b) Cross-flow with
parallel paths 2(c), tailpipe 0·973 m: ———, measured; · · · · ·, predicted. (c) Triflow 2(d), tailpipe 1·43 m:
———, measured; · · · · · , predicted;
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general level of attenuation by some 15 dB above 300 Hz; for example, the minimum
attenuation of 5 dB near 350 Hz in Figure 6(b) has risen to 20 dB in Figure 6(c), while
a new peak of 50 dB has appeared at 200 Hz. However, this is accompanied by a new
minimum of 250 Hz at 5 dB in Figure 2(c), compared with a level of some 20 dB in
Figure 2(b). Although, as should be expected, the predicted frequencies and corresponding
levels of the attenuation minima for the triflow in Figure 2(c) are similar to the measured
ones, the predicted levels of the higher peaks do not match so well, there being
overprediction at some with the reverse at others. Nevertheless, the acoustic performance
at the minima is of much greater practical significance in terms of the overall installed
exhaust system attenuation achieved under vehicle operating conditions, so the agreement
at the spectral minima is of more practical relevance.

3.3.  

The spectral distribution of the attenuation with the overall performance of all
expansion chamber silencers is strongly influenced [8] by the addition of annular side
branches within the expansion. The fact that one must provide sufficient lengths of
perforated pipe to accommodate the flow without incurring excessive back pressure
means that the scope for adding this feature to cross-flow silencers is somewhat limited.
The fact that side branches can certainly modify the acoustic behaviour is illustrated by
comparing Figure 7(a) with Figure 6(a) and Figure 7(b) with Figure 6(b).

For the results in Figure 7, the inlet side branch length was reduced from 0·084 m to
0·026 m, while that at the other end was increased from 0·024 to 0·134 m, to convert
silencers no. 2(R) and no. 2(c) to silencers no. 2(R1) and no. 2(c1) respectively, as has been
listed in Appendix C. The tailpipes here are also 0·1 m shorter, although the change was
not made deliberately. The resulting shift of the associated frequencies of the successive
spectral minima, by an amount inversely proportional to the respective reduction in
tailpipe length, again shows that these features of the attenuation spectra are related to
the tailpipe. On the other hand, the frequency of the major peaks has been reduced, for
example, from 365 Hz in Figure 6(a) for silencer 2(R) to 290 Hz in Figure 7(a) for silencer
no. 2(R1), with a rather larger reduction for silencer 2(c1) compared with silencer 2(c) in
Figures 7(b) and 6(b) respectively.

However, the overall acoustic performance of both silencers has remained effectively the
same following the change in side branch lengths. The predictions on Figure 7(a) are a
fair match with the observations, except for the magnitude of the predicted attenuation
at the tailpipe minima, which is obviously misleading. The match of Figure 7(b) is similarly
acceptable below 700 Hz at the peaks but again not so at the minima. The minima
correspond to the acoustic resonances of the system, and the predicted levels there are thus
rather sensitive to the effective damping at these frequencies. It seems likely that the 20%
reduction in the length of perforated pipes reduced this significantly for the preditions, but
not for the measurements. These two results are representative of several other similar
comparisons, and indicate the relative sensitivity of the frequency and amplitude
distribution of the attenuation spectrum to changes in the internal geometry of the central
chamber.

3.4.     

Sequences of attenuation spectra measurements at M=0, M=0·05 and M=0·1 were
made with at least ten different silencers and revealed rather similar trends in the general
behaviour of all of them. One typical example with cross-flow silencer no. 1 has already
been given in Figure 4(b) and two more are now presented in Figures 8(a) and 8(b), again
corresponding to silencers 2(R1) and 2(c1) respectively. Here, the zero flow measurements
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Figure 7. The comparative attenuation of flow-reversing silencers with altered internal side branches.
(a) Cross-flow reversing 2(R), tailpipe 0·915 m: ———, measured; — — —, predicted. (b) Cross-flow with
parallel paths 2(c1), tailpipe 0·915 m: ———, measured; — — —, predicted;

in Figures 7(a) and 7(b) are repeated for comparison with measurements made with flow
Mach number M=0·05 and M=0.1. Except at the high attenuation peaks found with
zero flow, there is a general trend for attenuation levels to increase with flow velocity,
although there are some exceptions to this, in particular above 900 Hz. Similar trends in
behaviour were found in nearly all cases, except perhaps for the results in Figure 4(b) at
the attenuation minima. It can be argued that the reduction in attenuation at the high peak
levels might be due to flow noise generation, since the pressure signal amplitude in the
tailpipe is inversely proportional to the attenuation, while it is generally well established
that, other things being equal, flow noise levels tend to be higher in the tailpipe than
elsewhere in the system.

It seems well established by all the measurements, including those not illustrated here,
that the major influence of flow, excluding the generation of sound by the associated
aeroacoustic sources [9], is to flatten out the attenuation spectra to some extent, at least



   213

over the Mach number range investigated here. It is common experience that flow noise
generation normally leads to some deterioration of overall attenuation performance of
exhaust systems that increases with flow Mach number. The consistent deterioration in the
attenuation performance above 900 Hz in all the current observations suggests that flow
generated noise was responsible for this feature.

3.4.1. The influence of throughflow on perforate impedance
The influence of perforate impedance on the reactive acoustic behaviour is rather

complex, though both predictions and observations indicate that a general reduction of
attenuation levels at spectral peaks with a corresponding rise in level at spectral minima
accompanies an increase of perforate impedance. No such trends are evident in the
observations presented in Figures 7(b) and 8(b) despite the addition of an additional flow
path reducing the flow velocity through the perforate for the results in Figure 8(b)
compared with those in Figure 7(b). Further increase of flow velocity through the perforate

Figure 8. The influence of flow on attenuation performance. (a) Silencer 2(R1): ———, M=0; — — —,
M=0·05; ----, M=0·1. (b) Silencer 2(c1): ———, M=0; — — —, M=0·05; ----, M=0·1.
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by some 25 percent by reducing the area of the perforate in the cross-flow silencer 2(R1)
led to a similar result. This evidence also supports the assumption adopted in Appendix
B that perforate impedance is not significantly altered by varying the mean flow through
it, at least for the range of variation that existed in the percent series of experiments where
the throughflow Mach numbers in the holes were as high as 0·09 in some instances. This
result seems consistent with both the predictions and measurements reported in reference
[1] for a silencer of type illustrated in Figure 1(a) after due allowance was taken for the
different method adopted for calculating the hole impedance (but see also the discussion
in section 4.1.2). In this case the porosity was 3·9% and the average flow Mach number
through the holes was 0·12.

3.4.2. Flow-reversing end chambers
When present, such chambers will clearly have an influence on silencer acoustic

behaviour. Thus the attenuation spectra of flow-reversing chambers were investigated in
a separate sequence of experiments with four different geometrical arrangements in each
of two chambers of different sizes. As with the cross-flow silencers, they all exhibited
similar acoustic behaviour at the attenuation minima as the mean flow Mach number was
increased from 0 to 0·1. A typical set of measurements with the larger sample is plotted
in Figure 9. Below 500 Hz, the measurements show an increase in attenuation at the
spectral minima with flow, while at higher frequencies the trend is reversed. The additional
two minima that were clearly present at M=0·1 are a feature confined to the larger model
chamber, since it did not occur with the smaller one. In seven cases there was a systematic
decrease in the levels at the attenuation maxima both with increase of flow and frequency,
as seen in Figure 9. However, in one set of experiments with the smaller model the trend
was reversed at the highest flow speed, with no significant changes in the levels at the
attenuation maxima with the flow speed at M=0·05.

3.5.   

Since space for the sound attenuating elements of an exhaust silencing system is often
severely limited, the relative acoustic efficiency of the different types in Figure 1, expressed

Figure 9. The attenuation performance of a flow-reversing end chamber; M=0; tailpipe 0·8 m long: ———,
– – – , M=0·05; · · · · · , M=0.1.
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as the attenuation performance per unit volume [8], is of general interest. As has been seen
the attenuation minima are normally closely associated with the half-wave resonances of
the tailpipe, interacting acoustically with the preceding silencing element, so its length often
governs the spectral distribution of minima in their combined attenuation performance.
The measured attenuation of triflow silencer no. 1(a), with the same external dimensions
as silencer no. 1, is compared with the predicted attenuation in Figure 10(a). One notes
that the predictions slightly underestimate the attenuation at the minima as usual.
Otherwise, the spectral distribution and levels of the remainder of their attenuation spectra
match quite well, excepting the obvious local discrepancies near 350 and 800 Hz. The
corresponding spectra measured with flow Mach number M=0 and M=0.05 are
compared in Figure 10(b). One notes that the tailpipe length had been increased by 5 mm
for these measurements. It is clear that the influence of flow on attenuation performance
corresponds with the results described already.

Figure 10. The attenuation performance of a triflow silencer no. 1(a). (a) With zero flow, tailpipe 1·295 m
long: ———, measured; · · · · · , predicted. (b) Tailpipe 1·30 m long: ———, M=0; – – – M=0·05.
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The relative acoustic efficiency of the triflow silencer compared with the cross-flow is
demonstrated by comparing the observations in Figure 10 with those in Figure 4. When
doing so one should recall that the triflow tailpipe is about 50% longer than that for
cross-flow, with a consequent reduction by two thirds of the frequencies of the associated
attenuation minima. There is a clear gain in attenuation performance of from 5 to 15 dB
at the minima, accompanied by at least a similar gain throughout the spectrum, if one
excludes the obvious minimum at 1000 Hz in the triflow attenuation spectrum. Therefore,
a rough index representing the overall gain in acoustic volumetric efficiency would be some
10 dB. This explains the popularity of the triflow type, despite its potentially enhanced
back pressure.

4. DISCUSSION

The primary aim of this investigation was to identify and quantify the relative influence
of the geometrical features of cross-flow elements on their acoustic behaviour, together
with that of all additional relevant physical and operational factors, so that they can be
appropriately implemented in predictive models of the acoustic performance of multiple
path silencers. Such models are an essential constituent [8] of any rational procedure for
the design and acoustic performance optimization of exhaust silencing systems for the
control of noise emission from reciprocating engines installed in road vehicles and other
plant. One notes that the overall levels of such emissions [8] are often contolled by the
spectral minima in the overall system acoustic attenuation spectrum. Thus realistic
predictions by the models of the frequency and level of such attenuation minima are of
particular practical interest because of their relative importance. The associated flow losses
[8] represent another factor of practical interest, in the assessment of exhaust system
performance, due to their direct influence on engine output and fuel efficiency. However,
corresponding mean pressure loss measurements were not included in this investigation,
as they were not of direct relevance to the acoustic modelling.

In any exhaust or similar flow duct system, the forward and backward travelling
component wave amplitudes at any frequency remain effectively invariant along the
lengths of uniform pipes connecting silencer elements or other discontinuities. This is in
contrast to the corresponding fluctuating acoustic pressure and velocity distribution, since
their amplitudes vary cyclically along the length of such pipes as a result of wave
interference. Thus the measurements and prediction procedures adopted in this
investigation took full account of these two facts, and so were primarily concerned with
establishing the component wave amplitudes in the uniform pipes either side of the element
under consideration. Consistently with this approach, the results of both measurements
with the corresponding predictions have been presented as attenuation index spectra
describing the ratio of the incident to transmitted forward travelling component wave
amplitudes across each element, as defined by equation (14). The amplitude of these
component waves in the tailpipe leading to the open exhaust termination are of particular
relevance [4] in predicting noise emission by the exhaust system to the surrounding
environment.

4.1    - 

The cross-flow central element corresponds in behaviour to that of coupled resonant
systems with internal damping in which both the coupling and the internal damping are
provided by the perforated walls. The observed behaviour includes the influence of the
tailpipe, to which the element is strongly coupled.
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4.1.1. The influence of geometry and wall porosity
Where the wall porosity is high, the internal coupling is relatively strong and associated

damping relatively weak. Thus with cross-flow silencer no. 1 the overall behaviour of the
cross-flow element with tailpipe that was illustrated in Figure 4(a) corresponds to that of
a single resonant system with half-wave resonances at 343 and 686 Hz strongly coupled
to the tailpipe with half-wave resonances at 166, 332, 498, 663 and 995 Hz.

When the wall porosity is halved, as in silencer no. 2, the corresponding observations
in Figure 5(a) indicate that the overall behaviour now corresponds to two coupled resonant
systems with resonances at 475 and 950 Hz and a strong anti-resonance at 800 Hz. Again
these are strongly coupled to a tailpipe which has half-wave resonances at 173, 345, 518,
690 and 827 Hz. The corresponding behaviour when this is modified to become a
flow-reversing element is illustrated in Figure 6(a). Although the spectral distribution of
attenuation is similiar in some respects, the frequency of the first strong anti-resonance has
been approximately halved to 367 Hz, with a second one appearing at just below 900 Hz.
The interaction of the lower anti-resonance with the tailpipe has reduced the corresponding
resonance frequency slightly from 345 Hz seen in Figure 5(a). The result of adding a further
coupled element as shown in Figure 6(b) is to raise the anti-resonance frequencies to 430
and 930 Hz respectively. The addition of a further flow-reversing element and a longer
tailpipe has added further resonances and anti-resonances, associated with the
increased number of interacting resonant elements in the overall behaviour now shown
in Figure 6(c).

The coupling was reduced further by decreasing the length of the perforated pipes in
silencer no. 2(R) by 20%, to produce silencer no. 2(R1). The overall length of the chamber
remained the same, so one of the existing internal side branches was increased in length
by a corresponding amount. This reduced the first side branch resonance frequency from
just over 1000 Hz to 640 Hz. The resulting measured behaviour in Figure 7(a), when
compared with that in Figure 6(a), shows that the interactions with this additional resonant
system has produced a further significant reduction in the frequency of the first
anti-resonance of the whole system and a slight reduction in frequency accompanied by
an increase in amplitude at the second. The corresponding alterations to silencer no. 2(c)
to produce no. 2(c1) have resulted in a similar behaviour at the lower anti-resonance when
the corresponding observations in Figure 7(b) are compared with those in Figure 6(b), but
one can see that the higher one has become more complex.

The observations all without mean flow show clearly that the observed overall changes
in acoustic behaviour illustrated in Figure 4(a), 5(a) and (6a)–6(c), with Figures 7(a) and
7(b), are a result of changing both the tuning of the individual coupled resonant elements
and the coupling between them. Furthermore, these changes in geometry significantly
modify the resulting acoustic interactions between the individual elements.

4.1.2. The influence of flow
The presence of flow above M=0·025 is known to increase the resistive component of

the perforate impedance significantly, thus increasing the internal damping associated with
the coupling between the resonant elements in the central cross-flow section. Almost all
of the observations of the overall behaviour in Figures 4(b), (8a) and 8(b), and (10b) exhibit
changes in the acoustic response, both at the resonances and anti-resonances, that result
from the increase in the damping that accompanies an increase in the mean flow Mach
number in the inlet pipe from zero to 0·1. The same is true for the general trends in the
behaviour at the anti-resonances in Figure 9 for the observations made with the
flow-reversing chamber. There is some evidence of flow noise generation [9] above 900 Hz
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in some of the recorded spectra. Similarly, there appears to be some decrease in the
damping at the resonances found in Figures 4(b) and 9, and perhaps Figure 10(b).

The results in Figure 9 on page 785 of reference [1], giving the observed and predicted
transmission loss of a plug muffler, indicate a corresponding significant increase in
damping at the resonances, accompanied by a large increase in attenuation at the
anti-resonances when the flow Mach number was increased from zero to 0·05. The wall
porosity was considerably lower, being 3·9% in this case. The chamber diameter was
101·6 mm, pipe diameter 49·3 mm with perforated pipes 128·6 mm long. The hole diameter
was similar to that in the present experiments, but the wall had only half the thickness.
The effective expansion ratio from pipe to chamber was just over 3, compared with 8·5
and 15·6 in the present experiments. Clearly, the significant difference in observed
behaviour at the anti-resonance requires explanation and thus provides grounds for
further investigation. This is reinforced by the fact that trial calculations with the current
model predicted a behaviour that was closely similar to the observations in reference [1]
with zero flow, but predicted that a somewhat higher damping existed at the strongest
anti-resonances.

A suggestion that the results at the higher anti-resonances presented here were all
contaminated with the flow noise provides an alternative explanation for the observed
behaviour. However, this is not borne out by the predicted behaviour in Figure 5(b),
nor is it by an extensive sequence of other measurements reported in references [4] and
[8], nor in a series of further relevant predictions and observations made during the current
and other investigations that have not been specifically included among the examples
illustrated.

4.2.   

The development of the predictive models corresponding to each member of the
sequence of cross-flow and multiple path silencers of current interest began from the
one-dimensional wave equations (2) that describe the acoustically related fluid motion
associated with each section of the central element illustrated in Figure 2. These equations
were derived from the more general wave equations (1) by assuming that the wave motion
in each of the three regions remained essentially one-dimensional and was directed along
the pipe and chamber axes, while radial propagation existed only through the perforated
pipe walls. Thus it was assumed that the influence of any further radial or transverse
motion remained sufficiently small to be neglected. This includes, for example, the neglect
of the time delay [4] associated with the radial area expansion from the pipe surface region
1 to the chamber and the corresponding time delay associated with the area contraction
from the chamber to the pipe surface of region 3.

However, systematic discrepancies existed between the values of the predicted tailpipe
resonance frequencies when such time delays were omitted from the models and those
values observed during the experiments. The magnitude of each discrepancy was then seen
to be proportional to the corresponding frequency of the associated spectral components
of the attenuation spectra. The addition of an end correction at the tailpipe inlet with
length equal to the smallest distance between the two pipe surfaces effectively eliminated
any difference between the observed and the predicted tailpipe resonant frequencies. Thus
this end correction has been included in the models that provided the predictions that
accompany the measurements in Figures 4(a), 5(a), 6(a)–6(c), 7(a) and 7(b) and 10(a). One
notes that a similar end correction was found necessary [4] to account for the time delays
or, alternatively, the corresponding phase lags, that were associated with the presence of
the evanescent waves at area and similar discontinuities that are required to match the
corresponding boundary conditions.
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In all the cases illustrated here, including the further sequence of observations and
predictions that were not included, there was fair to good agreement between predictions
and observations at almost all the system resonance frequencies. In a few instances, for
example, those described in Figures 6(a), 7(a) and 7(b), the overall attenuation at the
tailpipe resonances was underpredicted, suggesting that the corresponding predicted
damping was deficient by a small but significant amount.

It is well established that prediction of the resonant behaviour of coupled resonant
systems at the anti-resonances is subject to far greater uncertainties than similar predictions
for the resonances. This is clearly the case with the comparisons made at the large
coupled anti-resonances in the present investigation. For example, there are clearly
significant differences between observed and predicted behaviour at the anti-resonances in
Figures 6(c), 7(b) and 10(a). Nevertheless, the models described in section 2 appear to
provide reasonably reliable predictions of observed behaviour for practical application,
particularly at the resonances. It is here that reliable predictions have the greatest
significance for automotive silencer design.

4.2.1. Predictive models of flow-reversing chambers
The assumption of one-dimensional wave motion in the flow-reversing chambers also

led to inconsistencies between predicted and observed acoustic behaviour in some
instances. As one might anticipate, such anomalies were more likely when the aspect
ratio, defined as the ratio of the chamber length to its transverse dimension, was
substantially less than unity. The end correction described in section 2.2.1 eliminated the
inconsistencies as long as the pipes were flush with the end bulkhead of the chamber,
or were only slightly protruding from it, as is often found with manufactured silencers
of the relevant type.

The extension of one of these pipes to, say, half the chamber length, thus forming an
inlet or outlet side branch, introduced marked changes in the observed behaviour, with
corresponding inconsistencies in the predictions, although there was often reasonable
qualitative agreement. Clearly, this is an area for further investigation so as to improve
the modelling and maintain realism in the predicted acoustic behaviour. Predictions with
such models should also agree with any other observations [10] that already exist in the
literature. However, in this case the corresponding geometry was not described in sufficient
detail to perform any comparisons.

Similar inconsistencies have not been observed with the existing validated models [8]
describing the acoustic behaviour of Helmholtz resonators. This includes the design of such
resonators attached to expansion chambers [8] to enhance their attenuation performance
to a required level at a specified frequency.

5. CONCLUSIONS

Any rational intake/exhaust system design methodology [8] depends on a clear
quantitative understanding of the acoustic behaviour of the individual elements. The
material presented here explores the predictive acoustic modelling of three-duct silencer
configurations by one-dimensional equations. Comparisons are presented between the
predicted and observed behaviour of eight representative examples chosen from the
sequence of 20 model silencers tested, with geometry corresponding to the last four layouts
in Figure 1. Close agreement existed between predictions and observations with the
cross-flow silencers, type (b), and good agreement with the cross-flow reversing examples,
type (bR). The agreement was generally acceptable for practical purposes to fairly good
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with the cross-flow reverse with parallel paths type (c), but significantly less so being barely
acceptable for the triflow, type (d).

The reason for this was traced to the inadequacies of one-dimensional modelling
adequately to represent the acoustic behaviour of the flow-reversing expansions, since in
general terms this must clearly be strongly influenced by the cross-modes that must exist
there. The obvious advantages or design purpose of analytical models which maintain
physical insight and take due account of flow and temperature gradients over finite element
models provides the incentive for further studies in the appropriate modelling of these
elements. Some progress has already been made in this direction by adopting a more
physically realistic approach to the modelling.

A better detailed understanding of the lumped or distributed acoustic characteristics of
the perforated tubes, both linear and non-linear, would also improve the realism of the
modelling. This and the quantitative characterization of flow noise sources [9] also
represents an active area of current research. Of practical significance is the established
fact that, in practical terms [14], once the porosity exceeds around 15%, porous pipes are
effectively acoustically transparent.

With the exception of flow noise generation, the influence of both flow and temperature
gradients on acoustic performance [8, 13] appears to be adequately represented by the
one-dimensional modelling, at least for practical design purposes.
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APPENDIX A: FOUR-MICROPHONE WAVE DECOMPOSITION

The acoustic performance of silencers was summarized in section 2.5 by spectral
descriptions of their predicted acoustic transfer characteristics. These were expressed in
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Figure 1A. The four-microphone test layout.

terms of the positively and negatively travelling component wave spectra p2(v).
Corresponding measurements are required for comparison with predictions. Although
experimental procedures for performing such measurements are well documented [11, 12]
there are some differences [12] in detail in those adopted for the measurements reported
here. The positions of the inlet I and outlet O planes of the element of interest are first
identified as shown in Figure A1. Two pairs of pressure time histories, P1 and P2 in the
inlet duct leading to plane I and P3 and P4 in the outlet duct following from plane O, are
measured simultaneously at positions x1, x2 and x3, x4 respectively relative to planes I and
O, as shown in the figure. It should be noted that x1 and x2 have negative values, while
those for x3 and x4 are positive.

The acoustic fields at the four transducers are the complex sum of the individual
positively and negatively travelling component waves in each of the two sections of
duct. Each spectral component of the pair of time histories in the inlet duct can be
described by

P1(v)= p+
I exp(−ib+

I x1)+ p−
I exp(ib−

1 x1), (A1a)

P2(v)= p+
I exp(−ib+

I x2)+ p−
I exp(ib−

1 x2), (A1b)

and in the outlet by

P3(v)= p+
0 exp(−ib+

2 x3)+ p−
0 exp(ib−

2 x3), (A1c)

P4(v)= p+
0 exp(−ib+

2 x4)+ p−
0 exp(ib−

2 x4), (A1d)

where b1 and b2 are the complex wavenumbers in the inlet and outlet pipes, respectively,
and are defined by

b= k+ a(1− i), b+ = b/(1+M), b− = b/(1−M), (A2a–c)

a=(1/ac)(nv/2)0·5[1+ (g−1)Pr−0·5], (A3)

where M is the Mach number, a is the viscothermal wave attenuation coefficient, n is the
kinematic visosity, g is the ratio of specific heats and Pr is the Prandtl number, all evaluated
at the local flow temperature and gas composition in each relevant section of pipe.

Equations (A1a,b) can be solved directly at each frequency for the component wave
amplitudes p2

I in the pipe attached to the silencer inlet port and equations (A1c,d) for the
amplitudes p2

0 in the pipe attached at the outlet port, since b2
1 and b2

2 with the associated
exponentials are then all constant factors. It is important to note that there is a transport
time delay across the system element between planes I and O in Figure A1. This can be
taken into account by acquiring and digitizing all four pressure–time histories P1–P4

simultaneously. Choosing P1 as a reference, one can replace the spectral components pn(v)
in equations (A1) by the corresponding resulting cross-spectra Sn(v), given by

Sn(v)=E[P*1 (v)Pn(v)], n=1, 4, (A4)
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where P*1 (v) and Pn(v) are the windowed and averaged FFT’s of the corresponding time
histories, and the asterisk represents the complex conjugate. When one includes the
corresponding substitutions on the right side of equations (A1), one has, for the
corresponding equation (A5a), in place of A1a,

S1(v)=P*1 (v)P+
I (v) exp(−ib+

1 x1)+P*1 (v)P−
I (v) exp(ib−

1 x1) (A5a)

with similar expressions for equations (A5b), (A5c) and (A5d). Equations (A5a) and (A5b)
can be solved to yield the corresponding values of P*1 P2

I in the inlet pipe and equations
(A5c) and (A5d) for the values of P*1 P2

0 in the outlet pipe. One notes that the factors P*1 (v)
are constant at each frequency and will cancel when the corresponding ratios expressing
acoustic performance in equations (14)–(16) are evaluated.

An alternative form of solution [5] is accomplished by expresing equations (A5) in matrix
form. Careful comparisons [13] between the results of the two methods applied to sets of
experimental data showed that the algebraic solutions described here seemed to give
somewhat more realistic results at frequencies close to the pipe and chamber resonances.
Otherwise, as one might expect, the results were closely similar. The measured transfer
spectra obtained by both solutions were also clearly unrealistic at frequencies when the
spacing between the transducer approached an integer multiple of half wavelength. The
reason for this is well understood and widely recognized [12].

There are some obvious precautions necessary if reliable measurements are to be
achieved. Firstly, in the formulation just presented it has been assumed that all four
transducers and signal channels have identical performance, which is unlikely to be true.
Therefore, a further cross-calibration to account for any such differences should be
included in the signal processing. When all four transducers are exposed to the same
acoustic field one again chooses one as a reference and then evaluates the cross-spectral
densities with the products p*1 pn of the corresponding measured time histories, according
to the scheme in equation (A4). The corresponding correction factors would then be
G1n =(p*1 pn)/(p*1 p1), n=1, 4. The corrected spectra that are substituted into equation
(A5a) are then given by Sn(v)/G1n , n=1, 4, upon noting that S1(v)/G11 =1. With the
alternative matrix approach, one notes [13] that the appropriate correction factors below
the leading diagonal of the correction matrix are the complex conjugates of those in
corresponding positions above it, a point not clarified in reference [5].

Second, with white noise excitation appropriate procedures are required for the data
capture and processing. The sampling rate for digitization must be sufficiently high to
avoid aliasing. Furthermore, contamination by noise can be minimized by appropriate
low-pass filtering of the signals representing the time histories, before they are digitized.
Similarly, the sample records should be long enough to provide sufficient samples to obtain
a high number of averages and thus yields adequately smooth spectra. For most of the
measured spectra reported here, the sampling rate was 8192 samples per second and data
was acquired simultaneously on each channel for sixty seconds. The data was processed
by using a 4096-point FFT, Hanning windowed with a 15% overlap. This gave 69 averages
and quite smooth results. A lower sampling rate and shorter data length yielding 17
averages was used for Figure 4(a), which then provides a comparison of the extent of
smoothing achieved by a fourfold increase in the number of averages.

APPENDIX B: PERFORATE IMPEDANCE MODELS

There is a range of impedance models in the literature that apply to distinctly different
situations. The ones of interest here concern perforated tubes enclosed in an expansion
chamber. These can be grouped into two classes, which comprise analytic models corrected
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by empirical relationships, which have general application, and purely empirical models,
which tend to be specific for a given perforate sample. Systematic studies [5] and [6],
involving comparisons of an extensive sequence of models representing both classes,
showed that the quasi-analytic models described below gave general descriptions of
perforate impedance that remained in good agreement with observations.

In accordance with observed behaviour, perforate impedance is normally modelled in
two regimes. When, in the absence of grazing flow, the fluctuating velocity amplitude in
the holes is less than about two metres a second [1] the perforate impedance exhibits linear
behaviour, while at higher velocities this becomes non-linear. Experimental evidence [5]
suggests that the limiting velocity just stated increases significantly with grazing flow, and
this can be by as much as an order of magnitude when the grazing flow Mach number
is 0·2. With grazing flow Mach number MQ 0·025, experimental evidence [1, 5] suggests
that the linear regime is maintained as long as the fluctuating pressure amplitude, expressed
as a sound pressure level (SPL), remains less than 120–125 dB. This limit also appears to
increase both with the excitation frequency and with the grazing flow Mach number.
Since the limit depends on the velocity through the holes the porosity s, defined as the
total area of the holes per unit surface area, must also be a factor, which therefore has
been included.

With grazing flow Mach number q0·025, the limiting value of the sound pressure level
increases, say, to 135 dB or more as the Mach number increases. For more details of this
somewhat complex behaviour, see references [1] and [5]. The measurements reported here
were all carried out with white noise excitation at a sound pressure level that was limited
to 125 dB by the electrical characteristics of the electret microphones used for these
measurements. Thus the perforate impedance models described here are limited to the
linear regime, and for consistency were adopted to represent its behaviour in the predictive
models.

In the linear regime, with a grazing flow Mach number less than 0·025, the specific
resistance including hole end effects and radiation impedance [5] is given by

R0

rc
=

(8nv)0·5

sc 01+
t
d1+

1
8s

(kd )2, (B1a)

where t is the plate thickness and d is the hole diameter. The second term on the
right side represents the radiation impedance. The corresponding specific reactance is
represented by

X0

rc
=

k
s $08n

v1
0·5

01+
t
d1+ t+ d0%, (B1b)

where d0 =0·85d(1−0·5s0·5). The second factor in the expression for d0 represents the
influence of hole interference on the effective end correction, while the factor 0·85
represents an approximation to the factor 8/3p in the analytic expression for the reactance
associated with a circular opening in an infinite flange.

With grazing flow Mq 0·025, the specific resistance becomes

RM

rc
=0·6

(1− s2)
s

(M−0·025)+
R0

rc
, ME 0·05, (B2a)

RM

rc
=0·3

(1− s2)
s

M+
R0

rc
, Mq 0·05, (B2b)
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and the corresponding specific reactance is given by

X
rc

=
k
s $08n

v1
0·5

01+
t
d1+ t+ d%, (B2c)

where d= d0(1+305M3)−1. The corresponding empirical models for the intermediate
and non-linear regimes, which are not of direct interest here, can be found in reference
[5]. The survey [6] also showed that the influence of through flow on impedance was
significantly smaller than that of grazing flow at the same Mach number. Typically, to
minimize static pressure losses, the magnitude of the through flow Mach number is
normally significantly less than that of the grazing flow. Thus the influence of flow through
the holes on perforate impedance has been assumed negligible for the conditions normally
found in the practical silencers of present interest. See for example, the discussion in section
3.4.1 and section 4.1.2.

During the measurements it was found that with porosities exceeding 15–20% of the
open area, the perforated tube behaved as if its walls were effectively acoustically
transparent, which is a result noted by other observers [14].

APPENDIX C: THE LAYOUT AND DIMENSIONS OF THE TEST SILENCERS

The cross flow silencer no. 1 with triflow silencer no. 1(a) were commercially fabricated
from 1·5 mm steel sheet and 50 mm diameter steel tube. They formed part of a sequence
supplied for acoustic testing in connection with another project. Details describing their
dimensions that were provided by the manufacture were confirmed as closely as possible
by measurements on site. They were both 0·5 m long with internal diameter of the outer
shell nominally 0·2 m, while that of the pipes was 47 mm. The distance between the pipe
centrelines (l5 in Figure 3(c)) was 50 mm in both. Porous sections were perforated with sets
of 3·5 mm diameter holes arranged in staggered rows with circumferential and axial pitch
of 5·5 mm in both. This gave them a nominal porosity of 15·9%.

The two internal pipes in silencer no. 1 were perforated over a length of 489·5 mm,
labelled l in Figure 3, with unperforated lengths l1 at the expansion inlet and l2 at its outlet
of 4 and 6·5 mm respectively, while the tailpipe length was 1·01 m overall during the tests.
Silencer no. 1(a) had both porous pipes perforated over a length l=268 mm, with
l1 = l2 =12 mm. The flow reversing chamber at the far end from the inlet was 120 mm long
while that at the other was nominally 70 mm long. The ends of the pipes protruded slightly
into the chambers so there is some uncertainty concerning some of the precise lengths. The
overall length of the tailpipe during testing was either 1·295 or 1·3 m.

The group of silencers no. 2 were all assembled on site using a thick walled aluminium
tube of 126 mm internal diameter for the outer case. The perforated pipes were 38 mm
internal diameter steel tubes adapted from the set employed during the experiments
described in reference [5]. The 1·7 mm thick walls of the two samples used were drilled in
two patterns, the outlet pipe with 1·9 mm diameter staggered rows of holes drilled on a
4·55 mm circumferential and axial pitch, while the inlet pipe was drilled with staggered
rows of 2·9 mm diameter holes on a 7·45 mm circumferential and a 6·55 mm axial pitch,
giving a porosity of 6.8% in both cases. Any drilling rag left on the insides of these pipes
had already been carefully removed. The remaining pipework was all plastic pipe of the
same internal diameter but with 2 mm thick walls. The baffles supporting the tubes were
medium density fibre board 25 mm thick and drilled appropriately to accommodate the
perforated tubes and inlet or outlet plastic pipes with centrelines 65 mm apart (l5 on
Figure 3(c)). All gaps were carefully filled with industrial sealant.
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With silencer nos. 2 and 2(R), l=254 mm, l1 =84 mm and l2 =24 mm with tailpipes
0·874 and 1·017 m respectively.

With silencer nos. 2(c) and 2(d), l, l1 and l2 were repeated, while the flow-reversing
chambers were 120 mm long, and the tailpipes were respectively 0·973 and 1·43 m. The
internal arrangement of the pipes was symmetric and the tailpipe diameter was the same
as the others.

With silencers nos. 2(R1) and 2(c1), l=210 mm, l1 =26 mm and l2 =134 mm. The
tailpipes were 0·915 m long.

Tests were also made with silencers 2(R2) and 2(c2), where the lengths l1 and l2 were
reversed with tailpipes 1·023 m long; and also with silencers 2(R3) and 2(c3), with
l=170 mm, l1 = l2 =100 mm, and tailpipe 0·99 m.

The large flow-reversing chamber with attenuation performance plotted in Figure 9 had
an internal diameter of 237 mm and a length of 200 mm, with inlet and outlet pipes of
0·51 mm internal diameter with their axes 110 mm apart and a tailpipe 0·798 m long. The
small version was of a size similar to silencer series no. 2, since it was made from a section
of the thick walled aluminium tube. It was 98 mm long and had 38 mm internal diameter
inlet and outlet pipes, and a tailpipe 0·887 long. The six other variants tested had a
sequence of inlet or outlet side branches added to the basic chambers, with the large
chamber increased in length to 272 m for two of them.


